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Modeling of an impact system with a drift
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A physical model to examine impact oscillators has been developed and analyzed. The model accounts for
the viscoelastic impacts and is capable to mimic the dynamics of a bounded progressive motion~a drift!, which
is important in practical applications. The system moves forward in stick-slip phases, and its behavior may
vary from periodic to chaotic motion. A nonlinear dynamic analysis reveals a complex behavior and that the
largest drift is achieved when the responses switch from periodic to chaotic, after a cascade of subcritical
bifurcations to period one. Based on this fact, a semianalytical solution is constructed to calculate the progres-
sion of the system for periodic regimes and to determine conditions when periodicity is lost.
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I. INTRODUCTION

The dynamics of physical systems, whose compone
make intermittent contacts with each other and whose c
tact points are progressively drifting, is of a considera
importance in practical applications. Imagine, for example
vibroimpact system driving a pile into the ground. During
operation, the driving module moves downwards, and
motion may be viewed as a sum of a progression with c
stant velocity and bounded oscillations. The simplest ph
cal model exhibiting such behavior is comprised of a m
loaded by a force having static and harmonic compone
and a dry friction slider, as shown in Fig. 1~a!. This model
was introduced and preliminarily analyzed in@1,2#. Despite
its simple structure, a very complex dynamics was revea
The main result from that work was a finding that the b
progression occurs when the system responds periodic
The dynamics of that system is similar to the dynamics
impact oscillators~see, for example,@3–11#!.

A special feature of impacting systems that might pro
to be useful in the current study is the instability caused
low-velocity collisions, so-called grazing effects. The fir
important work in this area was done by Nordmark@12#, who
studied analytically the occurrence of singularities in a pie
wise linear system. This work has been further expanded
thorough investigations of two-dimensional maps, wh
some universal behavior has been found@13–16#.

A wide range of impacting models have been applied
simulate and analyze engineering systems operating w
bounded dynamic responses. For example, in heat-excha
tubes@17#, thin-wall milling @18#, ultrasonic drilling of hard
materials @19#, and a vibroimpact ground moling syste
@20#, impacting models have proved to be useful. Howev
as it has been mentioned earlier, very few@1,2# have consid-
ered systems with drift. To fill this gap, a detailed ma
ematical modeling and nonlinear dynamic analysis o
model is given in this paper. The model includes the v
coelastic properties of the contact between the impac
mass and the frictional slider, which were previously n
glected.
1063-651X/2001/64~5!/056224~9!/$20.00 64 0562
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II. MATHEMATICAL MODELING

We consider a simple two degree-of-freedom syste
which is shown in Fig. 1~b!. A massm is driven by an ex-
ternal force containing a harmonic component of amplitu
Pd , frequencyV and phase shiftw, and a static componen
Ps . The slider has weightless top and bottom plates c
nected to each other by a linear spring with stiffnessk, and a
viscous damper with damping coefficientc. Similarly to the
stick-slip phenomena reported in@21,22#, the progressive
motion of the mass occurs when the force acting on the sl
exceeds the threshold of the dry friction forcePf . Xm ,Xt ,Xb
represent the absolute displacements of the mass, slider
and slider bottom, respectively. It is assumed that the mo
operates in a horizontal plane, or gravity force is included
a static force.

We assume that at the initial momentt50, there is a
distance between the mass and the slider top called gaG.
The gapG is one of the system parameters and it may
positive, negative, or equal to zero. IfG.0, there is a tran-
sitional phase when the mass moves freely without any
teraction with the slider; ifG50, the mass is touching th
slider top, but the slider spring is not compressed; and
nally, if G,0, there is a precompression of the slider.

As the system may operate in stick-slip phases, its
namic dimension may vary. For the case when the mass
the slider move separately, the dynamics of the system
described by one second- and two first-order differen
equations

mẌm5Ps1Pd cos~Vt1w!,

c~Ẋt2Ẋb!1k~Xt2Xb!50, ~1!

Ẋb50.

When the mass and the slider are in contact, their motio
described by one second-order and one first-order differen
equations, which may be either oscillatory
©2001 The American Physical Society24-1
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FIG. 1. Physical models of
progressive impact systems;~a!
previous model @1,2#, ~b! new
model.
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mẌm1c~Ẋt2Ẋb!1k~Xt2Xb!5Ps1Pd cos~Vt1w!,
~2!

Ẋb50,

or progressive

mẌm52Pf1Ps1Pd cos~Vt1w!,
~3!

c~Ẋt2Ẋb!1k~Xt2Xb!5Pf .

Note that for Eqs.~2! and~3!, the displacement of the slide
top Xt is in phase with the displacement of the massXm , but
differs by a gap

Xt5Xm2G.

The equations of motion~1!–~3! are to be transformed to se
of first-order differential equations. These sets will use
following nondimensional variables:

t5V0t, x5
k

Pmax
Xm , y5

dx

dt
5

k

V0Pmax
Ẋm ,

z5
k

Pmax
Xt , v5

k

Pmax
Xb ,

and parameters

v5
V

V0
, V05Ak

m
, a5

Pd

Pmax
, b5

Ps

Pmax
,

d5
Pf

Pmax
, j5

c

2mV0
, g5

k

Pmax
G,

wherePmax is a normalization constant force.
As has been discussed above, the considered system

operate at the time in one of the following modes:~i! no
contact;~ii ! contact without the progression of the slider;~iii !
contact with the progression of the slider; and for each
careful consideration will be given next. For the simplicity
further analysis, the dimensionless friction threshold forcd
is set to 1.
05622
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A. No contact

If the displacement of the mass is smaller than the d
placement of the slider top plus the gap,

x,z1g, ~4!

then the mass and the slider top move separately. The mo
of the mass may be determined from the following set
equations:

x85y,
~5!

y85a cos~vt1w!1b,

where8 denotesd/dt. Equations of motion for the top an
the bottom of the slider are

z852
1

2j
~z2v !, ~6!

v850. ~7!

B. Contact without progression

This mode occurs when the relative displacement of
mass exceeds the displacement of the slider top, i.e.,

x>z1g, ~8!

and the force acting on the mass from the slider is gre
than zero but smaller than the threshold of the dry fricti
force, which may be expressed as

0,2jz81~z2v !,1. ~9!

In this case, the mass and the slider top move together
without progression, and the second equation of Eq.~5! has
additional elastic and viscous terms
4-2
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FIG. 2. Displacement of the mass,x ~solid
curve! and slider bottom,v ~dash curve! versus
time, t calculated fora50.3, b50.22, v50.2,
g50.02, w5p/2, and j50.01. The zoom-up
windows of regionsA and B are presented in
Figs. 3~a! and 3~b!, respectively.
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x85y,
~10!

y8522jz82~z2v !1a cos~vt1w!1b.

The velocity of the slider top is equal to the velocity of th
mass, and the displacement of the slider top is in phase
the mass displacement but differs byg in position

z85x8, ~11!

x5z1g. ~12!

When there is no progression, the bottom of the slider
mains stationary, hence, its velocity is equal to zero

v850. ~13!

C. Contact with progression

When the displacement of the mass is equal to or gre
than the displacement of the slider top plus the gap@see Eq.
~8!#, and the force acting on the mass is greater than
threshold of dry friction force

2jz81~z2v !>1, ~14!

then the mass and the top and the bottom of the slider
moving together, and the progression takes place. Equa
of motion for mass are

x85y,
~15!

y85a cos~vt1w!1b21.

The displacement and the velocity of the slider top are
scribed as before@see Eqs.~11! and~12!#. The velocity of the
slider bottom motion may be calculated from the express
below

v85z81
1

2j
~z2v21!. ~16!

Having spelled out different distinct phases of motion,
us now define a set of auxiliary functions,P1 , P2 , P3, and
P4, which will be used to obtain the final form of the equ
05622
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tions of motion. We will use the Heaviside functionH(•) to
describe the piecewise linear nature of the system.

P15P1~x,z!5H~x2z2g!, ~17!

P25P2~z,z8,v !5H~2jz81z2v !,

P35P3~z,z8,v !5H~2jz81z2v21!,

P45P4~v8!5H~v8!.

Finally, the equations of motion for the system being co
sidered may be given by the following set of first-order d
ferential equations:

x85y,

y85a cos~vt1w!1b2P1P2~12P3!~2jy1z2v !

2P1P3 , ~18!

z85P1y2~12P1!~z2v !/2j,

v85P1P3P4@y1~z2v21!/2j#.

Equations~18! will be used to conduct nonlinear dynam
analysis~Sec. III! by a means of numerical integration, an
also to construct an algorithm to determine periodic
sponses~Sec. IV!.

III. NONLINEAR DYNAMIC ANALYSIS

The basic function of the investigated system is to ov
come the frictional force and move downwards. Despite
fact that the considered model has only two degrees of f
dom, the dynamics of this system is very complex, vary
from different types of periodic to chaotic types of motion.
typical steady-state time history is presented in Fig. 2, wh
the absolute displacement of the impacting mass~solid line!
and the bottom of the slider~dash line! are shown. As the
responses of the slider top and the mass are indistinguish
in Fig. 2, a zoom up of the time history between 839.7 a
841 ~window A) is depicted in Fig. 3~a!. The vertical dis-
tance between the solid and dash lines, for any time when
mass is in contact with the slider top, is equal to the gapg.
4-3
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FIG. 3. ~a! Displacement of the mass,x ~solid curve! and slider top,z ~dash and dotted curve! versus time,t for a50.3, b50.22,v
50.2,g50.02,w5p/2, andj50.01;~b! Displacement of the mass,x ~solid curve! and slider bottom,v ~dash curve! versus time,t for the
same values of parameters.
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The progressive motion of the slider bottom and the m
may be seen from Fig. 3~b!. The phases when the mass a
the slider are in contact and out of contact are essentia
the dynamics of this system and they are discussed in d
later in the paper, where the periodic solution is construc

Our study has revealed that the largest drift~the best pro-
gression! is achieved for period-one motion@Fig. 4, curve
~d!#, which may be clearly seen by examining displacem
of the slider bottom~dash lines! in Fig. 4. The steady-stat
responses attP(800,1200) for the same system paramet
are depicted on Figs. 5~a!–5~e!. Figure 5 shows an importan
sequence of subcritical bifurcations, where the system bi
cates from period four@Fig. 5~b!# to period two@Fig. 5~c!#,
then from period two to period one@Fig. 5~d!#. A transition
from period-one to chaotic motion with a high-frequen
component@Fig. 5~e!# determines the interval of static forc
b for which the best progression exists. In addition, the s
tem may exhibit chaotic motion at large@Fig. 5~a!#, and this
will be discussed later. The periodic motion depicted in F
5~f! is similar to the one obtained for a four-dimension
rotor system studied by Heijden@23#. The high-frequency
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oscillations are caused by the mass being in permanent
tact with the slider.

Further in this section, a brief overview of the global sy
tem dynamics will be given by a means of bifurcation d
grams, Poincare´ maps, and Lyapunov exponents, which ha
been computed usingDynamicssoftware@24#.

Since the displacements of the system elements~mass,
top, and bottom of the slider! are moving from the origin, the
mass velocity has been used to view the structural change
the system responses due to the fact that it is bound
Therefore, the bifurcation diagrams presented in Fig. 6 w
the branching parameters as the static force and frequenc
excitation, are constructed for the change of the mass ve
ity.

In Fig. 6~a!, a bifurcation diagram for variable static forc
b is presented. The bifurcation structure is rather comp
@13,16# and not typical of a smooth system because the v
tor field given by Eqs.~18! is nondifferentiable. As can be
seen, the system responds chaotically forbP(0.0,0.1) with a
narrow window of periodic motion, forbP(b1 ,b2). Then
we have a large window of periodic motion forb in the
FIG. 4. Displacement of the mass,x ~solid
curves! and slider bottom,v ~dash curves! versus
time, t calculated fora50.3, v50.1, j50.05,
g50.02,w5p/2, and~a! b50.05; ~b! b50.095;
~c! b50.1; ~d! b50.15; ~e! b50.19, and~f! b
50.27.
4-4
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FIG. 5. Steady-state responses of the mass,x ~solid curves! and slider bottom,v ~dash curves! for a50.3, v50.1, j50.05,g50.02,
w5p/2, and~a! b50.05; ~b! b50.095;~c! b50.1; ~d! b50.15; ~e! b50.19, and~f! b50.27.
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interval (0.10,0.165), where its end is marked by a verti
dash line. Thereafter, a series of quasiperiodic and peri
windows appear. This branching parameter proved to be v
useful for determining the regions of the best progressio

Figure 6~b! uses the frequency of excitation,v as a
branching parameter. The system starts up with a nar
chaotic window aroundv50.03, and then oscillates period
cally up tov'0.25, where a first period of doubling bifur
cation occurs. The second period of doubling appears aro
v50.37, leading eventually to chaos forv in the interval
(0.4,0.55). Then, the system has a window of periodic m
tion, initially with period two, which atv'0.62 doubles and
at v'0.68 doubles again leading to chaotic motion start
approximately atv'0.7.

The observation of the bifurcation diagrams has brou
some practical insight regarding the progression ra
achieved by the system. By looking at the bifurcation d
gram in Fig. 6~a!, the end of the large periodic window i
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marked atb'0.165. Since the system equilibrium is movin
towards larger displacements, one way to monitor the p
gression rate is to calculate progression in a finite time.
our experiments, we set up timet equal to 50 periods of
external loading. As can be clearly seen from Fig. 7,
maximum penetration rate coincides with the end of perio
cal regime, which occurs forb'0.165. Also, it is worth not-
ing a few local maxima for higher values ofb, which were
mentioned by Krivtsov and Wiercigroch@1#. The informa-
tion regarding the position of the maximum penetration r
~the end of periodic regime! has been used to develop
semianalytical algorithm for determining this point, and th
will be outlined in the next section.

Apart from the velocity, the other bounded characteris
of the system is the difference between displacement of
mass and displacement of the slider bottom. This differe
was used for construction of Poincare´ maps. Poincare´ maps
for two different values of the frequencyv and fixed static
4-5
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and dynamic forces and damping coefficient are given in F
8. They demonstrate a strange attractor development, w
appears to be similar to the one reported in@5#. As can be
seen, the higher the frequency, the more complex the be
ior of the system.

IV. PERIODIC BEHAVIOR

The numerical analysis of the system shows that
period-one motion presented in Fig. 5~d! is the most efficient
from the progression point of view. Since our system
piecewise linear, this periodic solution may be construc
by matching linear solutions at points of discontinuities~e.g.,
@25#!.

The following approach has been adopted here. Initia
it is assumed that the displacement and velocity of the m
have certain~yet unknown! values. Starting from these va
ues, the system operates in one of the phases describ
Sec. II. The solutions for each phase are constructed.

FIG. 6. Bifurcation diagrams~dash lines indicate borders of dif
ferent regimes!; ~a! y5 f (b) for a50.3, j50.05, v50.1, g
50.02, w5p/2; ~b! y5 f (v) for a50.3, b50.15, j50.05, g
50.02, w5p/2. Bifurcation diagrams are constructed as follow
The initial value of the branching parameterb ~or v) is set to the
leftmost value 0.0~0.02! in the ~a! and ~b!. For this set of param-
eters, in order to exclude the transient behavior, the map is iter
100 times without plotting anything. The next 300 iterations of t
map produces 300 values of the velocity,y, which are plotted in the
figure. Then a small increment is added to the branching param
@in these figures it is equal to„b(or v)max2b(or v)min…/480# and
the procedure is repeated until the branching parameter reache
rightmost value. The repetition of the procedure by decreasing
branching parameter from rightmost to leftmost value showed
hysteresis in the system.
05622
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final displacements and velocities of the preceding phase
fine the initial conditions for the next one. This enables
also to calculate the time interval for which a particul
phase persists. Finally, the initial conditions of the first pha
are being found from the periodicity condition. The curre
paper refrains from a detailed account of the method use
determine the periodic solution as this will be given in
separate publication. However, a skeleton of the method
be discussed below.

In Fig. 9, a sequence of four phases for the one period
period-one motion is presented. This typical pattern is co
prised of the following:

Phase I – progression: the mass and the slider are in
tact.

Phase II – contact without progression: the mass and
slider are in contact but the slider bottom is not moving.

Phase III – no contact: the mass and the slider are mov
separately.

Phase IV – contact without progression: the same
Phase II.

In order to simplify our consideration, the beginning
progression was chosen as an initial point. In this mome
the mass and the slider top are moving together, and
force acting on the mass from the slider reaches the thres
value. Taking into account that the velocities of the mass
the slider top are equal, and their displacements differ by
gap, the following relation between the initial displaceme
and velocity may be written:

2jy01~x02g2v0!51. ~19!

As the initial displacement of the slider bottom,v0 does not
influence the mass motion, it is set to zero. Thus, we ha

x0511g22jy0 . ~20!

The other unknown is the time at this initial momentt0.
This means that we need to evaluate a phase shift betw
the external force and the system response at the begin
of the process

c05w1vt0 . ~21!

FIG. 7. Progressions fora50.3, j50.05, v50.1, g50.02, w
5p/2. Dash line indicates the value of static force correspondin
the maximum progression.
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FIG. 8. Poincare´ sections for
a50.3, b50.1, j50.01, g
50.02, w5p/2; ~a! v50.25, ~b!
v51.4.
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There are two periodic conditions for the mass displacem
and velocity

x~t1T!5x~t!1D,
~22!

y~t1T!5y~t!,

whereT is the period andD is progression of the slider pe
period. We will look for the periodic regimes, where th
periodT is equal to the period of external loading

T5
2p

v
. ~23!

Thus, three unknown functionsc0 , x0, and y0 may be
found from Eqs.~22! and ~23!. However, the arbitrary solu
tion of these equations cannot guarantee thatx0 andy0 sat-
isfy Eq. ~20!. For this reason, we first substitutex0 by the
function ofy0 @expression~20!#, and then construct a speci

FIG. 9. Four phases of a periodic response; solid line –
placement of the mass, dash line – displacement of the slider
dotted line – displacement of the slider bottom. The blow-up w
dow shows the displacements of the mass, slider top, and botto
the beginning and at the end of the period.
05622
ntfunctionF to monitor a difference between the exact period
solution and the one calculated for these arbitrary initial c
ditions

F5A@x~t1T!2x~t!2D#21@y~t1T!2y~t!#2. ~24!

If the minimum of this function is equal to zero, then th
periodic regime exists, and the durations of all four pha
may be determined. To provide a reader with more det
about how the solution is constructed, Phase I is caref
considered in the Appendix.

The constructed semianalytical solution gives a mean
investigate the dependence of the progression per period
function of the system parameters. Figure 10 shows the
fluence of the static forceb on the progression per period fo
different values of dynamic forcea under fixed damping co-
efficient j and frequency of external loadingv. As may be
seen from the graphs, the progression reaches the maxim
values at some certain values of static force and close to
maximum the periodic solution breaks down~dash line!. The
existence of this maximum is in a good agreement with
numerical calculations, known experimental data@26#, and
the previous analytical models@1,2#.

-
p,
-
at

FIG. 10. Influence of static force on progression forj50.01,
v50.1, g50.02,w5p/2 calculated using the developed semian
lytical method.
4-7
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V. CLOSING REMARKS

In this paper, a model of an impact system with a d
frictional slider was developed and analyzed. The sys
operates with bounded progressive responses~a drift!. The
system parameters were chosen to experience stick-slip
nomenon, which is used to mimic dynamics of engineer
systems~e.g., downhole drilling or ground moling!. The
model has been mathematically formulated and the equat
of motion developed. A typical nonlinear dynamic analy
has revealed a complex behavior ranging from periodic
chaotic motion. The bifurcation diagrams were construc
using variation of the mass velocity as the displacement
a drift. It was found that the maximum progression coincid
with the end of periodic regime and the beginning of chao
motion ~the largest Lyapunov exponent jumps from21026

to 1023). This information was used to construct a semia
lytical solution, which is useful to determine the conditio
for the best progression rates. It is hoped that this mo
having important practical applications, will be useful f
other physical applications~e.g., motion of suspended pa
ticles in fluid! and will stimulate further work on the dynam
ics of systems with drifts.
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APPENDIX

In order to demonstrate the idea of construction of pe
odic solution, let us consider in detail the first phase~pro-
gression! of the period depicted in Fig. 9. The framework f
the remaining phases is similar. The adopted method all
us to find step-by-step durations of all phases as function
initial valuesx0 , y0, andc0. Then by satisfying the period
icity condition as it is explained in Sec. IV, these values a
progression per period may be found.

We start our consideration from the progression phas
the moment, when this phase has just begun@x0 andy0 are
connected by relation Eq.~20!#. Using the initial values of
x0 , y0, andc0, we may construct the solution of Eq.~15! as

x~t!52
a

v2
@cos~vt1c0!2cos~c0!#1

1

2
~b21!t21y0t

2
a

v
t sin~c0!1x0 , ~A1!
05622
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v
@sin~vt1c0!2sin~c0!#1~b21!t1y0 .

~A2!

Having obtainedx(t) and taking into account thatz(t)
5x(t)2g, the displacement of the slider bottom may
found by solving of Eq.~16!

v~t!5x~t!2g2112jy0 expS 2
t

2j D . ~A3!

When the progression condition, Eq.~14! fails, another
phase, contact without progression, begins, and thus, the
of the first phase may be found from the following equatio

y~a!2y0 expS 2
a

2j D50. ~A4!

By substituting Eq.~A2! for Eq. ~A4!, we obtain

a

v
@sin~va1c0!2sin~c0!#1~b21!a1y02y0 expS 2

a

2j D
50. ~A5!

The above equation enables us to calculate the length o
first phasea as a function of the initial conditionsy0 andc0

a5a~y0 ,c0!. ~A6!

Then, the progression of the slider per periodD may be
expressed with respect toa as

D5v~a!5x~a!2g2112jy0 expS 2
a

2j D . ~A7!

At this point, the progression phase has finished and ano
phase, contact without progression, has begun. Therefore
initial conditions for the second phase are calculated us
expressions~A1! and ~A2!

xI5x~a!, yI5y~a!. ~A8!

The process should be continued by solving the equation
motion for the next phase with the initial conditionsxi ,yi
and phase shiftc i5c i 211«v, where i 5I,II,III,IV and «
5a,b,g,d. Finally, x0 andy0 may be found from the peri-
odicity conditions

xIV5x~d!5D1x0 ,
~A9!

yIV5y~d!5y0 .
4-8
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